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Figure 1: A live demonstration of our system. We are able to obtain high-fidelity animations of the user’s facial expressions in real-time using
convolutional neural net regressors. Left: a user wearing our prototype system, which uses cameras attached to the HMD to track the user’s
eye and mouth movements. Right: a digital avatar controlled by the user.

Abstract

Significant challenges currently prohibit expressive interaction in vir-
tual reality (VR). Occlusions introduced by head-mounted displays
(HMDs) make existing facial tracking techniques intractable, and
even state-of-the-art techniques used for real-time facial tracking in
unconstrained environments fail to capture subtle details of the user’s
facial expressions that are essential for compelling speech animation.
We introduce a novel system for HMD users to control a digital
avatar in real-time while producing plausible speech animation and
emotional expressions. Using a monocular camera attached to an
HMD, we record multiple subjects performing various facial expres-
sions and speaking several phonetically-balanced sentences. These
images are used with artist-generated animation data corresponding
to these sequences to train a convolutional neural network (CNN)
to regress images of a user’s mouth region to the parameters that
control a digital avatar. To make training this system more tractable,
we use audio-based alignment techniques to map images of multiple
users making the same utterance to the corresponding animation
parameters. We demonstrate that this approach is also feasible for
tracking the expressions around the user’s eye region with an internal
infrared (IR) camera, thereby enabling full facial tracking. This
system requires no user-specific calibration, uses easily obtainable
consumer hardware, and produces high-quality animations of speech
and emotional expressions. Finally, we demonstrate the quality of
our system on a variety of subjects and evaluate its performance
against state-of-the-art real-time facial tracking techniques.
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1 Introduction

Science fiction authors have excitedly envisioned immersive tech-
nologies that allow us to project our own digital avatars into
captivating virtual worlds. Dramatic advancements in computer
graphics and mobile display technologies have led to a remarkable
revival of virtual reality, with the introduction of low cost consumer
head-mounted displays, such as the Oculus Rift [Oculus VR 2014],
the HTC Vive [HTC 2016], and the Google Cardboard [Google
2014]. Beyond immersive gaming and free-viewpoint videos, virtual
reality is drawing wide interest from consumers and pushing the
boundaries of next-generation social media platforms (e.g., High
Fidelity, AltSpaceVR). We could mingle, discuss, collaborate, or
watch films remotely with friends all over the world in a shared
online virtual space. However, a truly immersive and faithful digital
presence is unthinkable without the ability to perform natural face-
to-face communication through personalized digital avatars that can
convey compelling facial expressions, emotions, and dialogues.

State-of-the-art facial tracking methods commonly use explicitly
tracked landmarks, depth signals in addition to RGB videos, or
humans-in-the-loop. However, approaches directly using tracked
landmarks to recover the full facial motion [Li et al. 2015] often
suffer from occlusions. A tongue is invisible in many motions, and a
large portion of the lips become invisible when an user bites her/his
lips. In another approach, artists manually draw contours for all
frames, and then solve a complex 3D model to fit the data [Bhat
et al. 2013]. This is a very computationally intensive process and
also suffers in the case of occluded regions.

While readily available body motion capture and hand tracking
technologies allow users to navigate and interact in a virtual
environment, there is no practical solution for accurate facial
performance-sensing through a VR HMD, as more than 60% of
a typical face is occluded by the device. Li and coworkers have
recently demonstrated the first prototype VR HMD [Li et al. 2015]
with integrated RGB-D and strain sensors, that can capture facial
expressions with comparable quality to cutting edge optical real-time
facial animation systems. However, it requires a tedious calibration
process for each session, and the visual quality of lip motions
during speech is insufficient for virtual face-to-face communication.
Furthermore, while a personalized digital avatar model can be
manually prepared by an artist, automatically digitizing an accurate
3D representation of a person’s head is still very challenging.

Our objective is to enable natural face-to-face conversations in an
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Figure 2: VR HMD prototype with integrated eye and mouth
cameras.

immersive setting by animating highly accurate lip and eye motions
for a digital avatar controlled by a user wearing a VR HMD. At
the same time, we seek to improve on the ergonomic form factor
of existing sensor-integrated headsets using lightweight hardware
components, and eliminate the per-user calibration process present
in existing methods.

To this end, we introduce a new learning framework for user-driven
speech animation suitable for virtual reality. We employ a prototype
(shown in Figure 2), which we modified based on a commercially
available VR HMD (FOVE) with built-in eye cameras. This new
prototype is more ergonomic and simpler compared to previously
introduced designs [Oculus VR 2014; Google 2014; Li et al. 2015].
Our HMD device has attached cameras that see direct views of the
user’s mouth and eyes, and reduces the variation in the input caused
by changes in the ambient illumination and the user’s pose. Thus,
our learning method can focus on specific subspace of facial motions
with a strong prior, as the data obtained by our device will be from a
lower dimensional subspace.

Recently, deep learning algorithms have shown promising results
in many classification and regression tasks in computer vision
[Krizhevsky et al. 2012; Toshev and Szegedy 2014]. One key
strength of deep learning methods is that they are capable of learning
and optimizing high-dimensional functions and are robust to various
appearance changes. In this paper, we present a deep learning
framework that can extract high fidelity motions from videos in real-
time. Unlike traditional approaches using tracked faces, our method
learns a direct embedding function of a high-dimensional image
to lower-dimensional animation controls of a 3D rigged character.
Additionally, our framework is designed so that it can take multiple
frames as input. This enables holistically aggregating temporal
and spatial cues from a sequence of frames. Our directly learned
mapping enables extracting high fidelity facial motions in real time,
while being robust to partial occlusion of regions of interest (such as
the tongue), changes in the ambient lighting, and variations in the
positioning of the HMD on the user’s head.

A crucial aspect of our framework is the manner in which we collect
the data used to train the deep convolutional networks in our system.
This data consists of images of various users performing salient
expressions with their mouths and eyes, and the corresponding
animation parameters required to control a digital avatar. Our
training data explicitly includes not only simple expressions used
to convey basic emotions, but also the more complex mouth
expressions required to produce plausible speech animation.

Our results demonstrate that this framework can efficiently produce
such animations with a high degree of fidelity unmatched by any
existing real-time performance-based facial animation techniques

suitable for emerging use cases such as interaction and communica-
tion in virtual environments.

We thus present the following contributions:

e a regression method using deep convolutional networks that
produces realistic facial expressions and visual speech ani-
mations. We introduce important techniques for improved
accuracy and robustness.

e a set of training data that we use for this learning approach,
acquired using the data collection framework described below,
making use of images of eye and mouth FACS expressions,
viseme samples from the Harvard psychoacoustic sentences,
and the corresponding animation parameters. We intend to
make this dataset publicly available for research purposes.

a lightweight VR HMD prototype system with integrated
mouth and eye cameras. Our solution does not require any
user-specific calibration and offers a deployable solution for
compelling and fully immersive face-to-face communication.

2 Previous Work

For over two decades, facial performance capture techniques have
been developed in the graphics and vision community to facilitate
the production of compelling 3D facial animation [Parke and Waters
1996; Pighin and Lewis 2006]. While striving for increased tracking
fidelity and realism, production-level methods often rely on complex
capture equipment [Guenter et al. 1998; Zhang et al. 2004; Li et al.
2009; Weise et al. 2009; Bradley et al. 2010; Beeler et al. 2011; Bhat
et al. 2013; Fyffe et al. 2014] and intensive computations [Garrido
et al. 2013; Shi et al. 2014; Suwajanakorn et al. 2014]. Even though
several of these method are adopted by leading visual effects studios,
the final animations are often reinforced with manual key-framing.
These fine adjustments are mostly performed around mouth and eye
regions, which provide critical emotional cues.

Eye and mouth animation. Motivated by these requirements,
Bermano et al. [2015] have recently developed a dynamic recon-
struction framework for eyelids using a deformation model that can
reproduce self-occlusions due to intricate skin folds. While very
convincing results are possible, this offline technique requires a
multi-view camera setup and manual steps. Eye gaze directions
also form a critical component for expressive facial expressions.
A state of the art gaze estimation technique using a deep neural
regressor is presented in [Zhang et al. 2015]. Despite its importance
for verbal communication and numerous research advances in lip
tracking [Basu et al. 1998], it is still very challenging to produce
convincing speech animations because of the complex lip and tongue
interactions. To achieve realistic lip-syncing and co-articulation
effects during speech, the use of audio signals have been explored
extensively to drive visual facial control parameters as an alternative
to optical sensing [Bregler et al. 1997; Brand 1999; Massaro et al.
1999; Ezzat and Poggio 2000; Chuang and Bregler 2005; Wang et al.
2006; Deng et al. 2006; Xie and Liu 2007; Wampler et al. 2007;
Taylor et al. 2012; Fan et al. 2015]. However, it is impossible to
capture non-verbal mouth expressions using only audio signals.

Real-time facial animation. Facial tracking from pure RGB
input is the most widely deployed technique for capturing perfor-
mances. Data-driven methods based on active appearance models
(AAM) [Cootes et al. 2001] or constrained local models [Cootes
et al. 2001] have been introduced to detect 2D facial landmarks
in real-time. Fully automatic techniques that do not require any
user-specific training such as the regularized landmark meanshift
method of [Saragih et al. 2011] or the supervised descent algorithm



of [Xiong and De la Torre 2013] have been recently proposed.
While the mapping of sparse 2D facial features to the controls of
complex 3D facial models has been explored [Chai et al. 2003], only
coarse facial expressions can be recovered. More recently, Cao et
al. [Cao et al. 2013] developed a real-time system that can produce
compelling 3D facial animations through a 3D shape regression
technique from RGB videos. By directly regressing head motion and
facial expressions, rather than regressing 3D facial landmarks and
then computing the pose and expression from this data, [Weng et al.
2014] were able to attain high tracking performance and accuracy,
allowing for implementations running in real-time on mobile devices.
While both of the aforementioned techniques rely on user-specific
data to train their shape regressors, Cao et al. further improved their
technique to eliminate the extra calibration step [Cao et al. 2014] and
increased the tracking fidelity to capture wrinkle-level details [Cao
et al. 2015].

Long before consumer-level depth sensors such as Microsoft’s
Kinect were available, Weise et al. [2009] demonstrated the first
high-fidelity facial animation system with real-time capabilities
using a structured light system. With RGB-D cameras becoming
mainstream, a long line of research has followed this seminal
work, improving the utility of low quality depth maps using motion
priors [Weise et al. 2011; Faceshift 2014], removing the need for
an extra facial model construction stage [Li et al. 2013; Bouaziz
et al. 2013], and increasing the tracking fidelity using 2D facial
features detected in the RGB channels [Li et al. 2013; Chen et al.
2013; Hsieh et al. 2015]. Though these RGB and depth sensor-based
performance capture techniques can be integrated in non-occluded
regions of a VR headset [Romera-Paredes et al. 2014; Li et al. 2015],
none of them support compelling facial speech animation, despite
the adoption of per-vertex Laplacian deformers in [Li et al. 2013;
Hsieh et al. 2015] for improved expression tracking. Lately, Liu
et al. [Liu et al. 2015] presented a state of the art real-time facial
animation framework based on RGB-D and audio input using a
speaker-independent acoustic deep neural network model. Even
in the presences of background noise, they demonstrated superior
animation output than audio and video signals alone, but the resulting
lip motions are still far from production-level fidelity.

Wearable facial sensing systems. Facial performance capture
using wearable, contact-based sensors began in the 1990s [Character
Shop 1995]. Since VR HMDs occlude a large part of the upper
face, contact-based sensors are potentially viable solutions for facial
capture with highly constrained visibility. Non-optical measurement
devices such as electroencephalograms (EEG) sensors have been
used in [McFarland and Wolpaw 2011] to record brain activities
to detect facial expressions and emotions, but extensive training
and user concentration is required. Lucero and Munhall [1999]
developed a system based on non-invasive electromyograms (EMG)
to map muscle contractions to a physically-based facial model [Ter-
zopoulos and Waters 1990]. Gruebler and Suzuki [2014] integrated
EMGs into a wearable device to detect coarse emotional facial
expressions for therapeutic purposes. EMG signals typically suffer
from muscular crosstalk and their reliability depend on the placement
of sensor locations and the subject’s fat tissue. Tactile methods based
on piezoelectric sensors have also been incorporated in smart glasses
for facial expression recognition [Scheirer et al. 1999], but are not
suitable for driving facial controls, since static states, such as keeping
the mouth open, cannot be measured.

Facial sensing cameras that are mounted on HMDs have been first
introduced for eye-gaze measurements [Huang et al. 2004; Steptoe
et al. 2010]. Eye gaze tracking cameras that are directly integrated
inside VR headsets have been recently deployed as commercial
solutions [Fove 2015; SMI 2014] for an alternative input interface
with virtual environments and realistic foveated rendering. Our

system uses the Fove HMD [2015] to map video recordings of
the eye region to animation controls of an avatar. While we
animate movements of the upper face region such as squints and
brow movement, gaze tracking is beyond the scope of this work.
We note, however, that our system could be used in conjunction
with the aforementioned solutions for gaze tracking to animate the
movements of the eyes themselves.

Romera-Parades et al. [Romera-Paredes et al. 2014] attempted to
track the entire face with a head-mounted display with partially-
observing inward looking cameras. Their training data are collected
using a separate RGB-D sensor and linear blendshape models
obtained from the facial animation software Faceshift [2014]. As in
this work, they also adopt a deep learning framework for regression,
but only poor results could be demonstrated even with user-specific
training data. Instead, our system generates highly compelling
speech animation by mapping the video input from cameras directed
at the regions of interest directly to the appropriate facial expression
controls. Furthermore, we remove the need for user-specific training
data by training our system on users of varying appearance.

Recently, Li et al. [2015] proposed the first VR HMD system to
enable fully immersive face-to-face communication. While the
deformations in the upper face regions are captured using ultra-thin
flexible electronic materials that are mounted on the foam liner
of the headset, the mouth performance is captured using a depth
sensor mounted on the HMD and a cutting edge facial animation
framework [Hsieh et al. 2015]. For every incoming frame, the
expression shapes of a blendshape model are optimized to fit the
user’s lower face and the coefficients are transferred to a target
avatar model for animation. While realistic facial expressions can
be obtained, the system produces poor lip motions during speech
and requires a complex calibration procedure for each subject.

3 Overview

System Prototype. Our system is based on a prototype of the
FOVE VR HMD, with integrated eye tracking cameras and our
custom mounted camera for mouth tracking. The HMD contains
infrared (IR) cameras directed at the user’s eyes and 6 IR LEDs
(940nm wavelength) surrounding each eye, allowing the cameras
to observe the user’s eyes despite the occlusion from ambient
illumination. The cameras runs at 60 fps at a resolution of 320x240.
The cameras’ field of view allows for tracking movements such
as blinks as well as movements of the region surrounding the eye,
such as squints and movement of the eyebrows. The HMD is also
equipped with a gyroscope, allowing for the tracking of the user’s
head orientation.

The user’s mouth is recorded with a Playstation Eye, modified to
use a 3.8mm lens and enclosed in a mount attached to the underside
of the HMD, placed approximately 7 cm from the user’s mouth.
This camera was used to record 640 x 480 RGB images of the
user’s mouth at 30 fps. Despite the close range, the field of view
of this camera allows for tracking the user’s full lip region even
when the mouth is wide open. 2 Streamlight Nano LED lights, each
producing 10 lumens of light, are attached on each side of the camera
and directed at the mouth. Diffusion cloth is attached to the front of
each light to reduce the intensity and sharpness of the emitted light.
With a length of 1.47 inches and weighing 10.2 grams, they add little
to the weight and size of the HMD, while reducing variation in the
lighting and thus removing the dependence on ambient illumination.
The system works both in fully illuminated rooms and in complete
darkness, as demonstrated in the accompanying video.

We note that our system is more ergonomic than that of [Li et al.
2015], which required a depth camera to be placed on a mount
attached to the front of the HMD at a significant distance from the
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Figure 3: An overview of our system. Left: Regressors used to control the avatar’s movements are trained using recorded sequences from
the internal and external camera and the corresponding blendshape weights. Right: These networks are then used to obtain appropriate
blendshape weights for the upper and lower face regions in real-time using live input from the cameras.

user’s mouth in order to obtain usable depth data from the sensor’s
structured light pattern.

Facial Animation Pipeline. Our pipeline is illustrated in Figure
3. We use a standard blendshape model to control the avatar’s
expressions. During online operation, images are captured from
the mouth and eye tracking cameras. The mouth images are passed
through a CNN regressor which outputs the appropriate blendshape
weights for the lower face region. A separate CNN regresses images
from the eye camera to obtain blendshape weights for the eye region.
The orientation of the head is obtained from the HMD’s IMU.

To train the mouth region regressor to produce these blendshape
weights, videos were recorded of several subjects reciting the same
set of phonetically balanced training sentences. A high-quality
animation sequence corresponding directly to one subject’s perfor-
mance of these sentences was created by professional animators.
Using dynamic time warping (DTW) [Sakoe and Chiba 1978] on the
audio signal from these recordings, the other training sentence videos
were aligned to this user’s performance, allowing the blendshape
weights from this animation sequence to be used for all subjects.
This alleviates the need for producing high-quality speech animation
sequences for each subject. Each user was also asked to perform a
small set of relatively simple facial expressions based on the Facial
Action Coding System. Animation data was provided by the artists
for each of these sequences.

The eye animation dataset was obtained in a similar manner, with
subjects performing some simple movements in the eye region also
corresponding to FACS expressions. Corresponding animations
were generated by the artists.

These eye and mouth images and their corresponding blendshape
weights were then used to train the regressors for the separate facial
regions, as described in Section 5.

While the audio signal is used to align the training images to the
animated sequences, it is not used as input to directly train our system
or during online operation to generate the animation sequences. This
allows our system to remain fully functional in the presence of
silence, such as during non-verbal expressions, or in the presence of
common occurrences such as extreme background noise or crosstalk.
In the supplementary video, we demonstrate the use of our system
under such conditions.

Note that, for most of the subsequent figures, we show the lower
and upper facial expressions separately and without the rigid motion

obtained from the HMD’s IMU to allow for easier evaluation of
the resulting expressions. Several example images of full facial
expressions with rigid head motion can be found in Section 6. Fully
animated video sequences, including live demos under a variety of
ambient lighting conditions, are in the supplementary video.

4 Data Collection

Creating a system that allows arbitrary users to control a digital
avatar with no user-specific calibration and using only video input
requires an appropriate collection of training data to be used as a
prior for regressing a user’s facial expression to the corresponding
expression of the avatar. This data must account for variations in
the facial expressions made by a given user and the appearances of
different users. For our system, we thus sought to obtain training
images of HMD users making a variety of salient mouth expressions,
including those that are poorly captured by existing optical tracking
techniques, and the parameters required to produce an expression
corresponding to each image for the avatar.

Visual Speech Dataset. To produce truly plausible speech ani-
mation, the training set to be used must model the effects of coar-
ticulation, which cause the facial expressions of one pronouncing a
given phoneme (referred to as a viseme) to vary based on the context,
as a user subconsciously prepares for the following phoneme and
recovers from the previous one [Taylor et al. 2012]. As such, a
model trained by simply having users recite a set of phonemes in
isolation would not properly account for the subtle variations in
users’ expressions that are necessary for speech animation.

To this end, we first collected synchronized video and audio
recordings of 10 subjects (5 male, 5 female) each reciting a list
of 30 sentences while wearing the HMD and maintaining a roughly
neutral expression. The video was recorded by the mounted camera,
while the audio was captured using an external microphone at 48
KHz. These sentences were chosen from the Harvard sentences
[Harvard 1969], a list of sample sentences in which phonemes appear
at roughly the same frequency as in the English language. The
sentences were chosen such that each of these phonemes appeared
in a variety of contexts (prior and subsequent phonemes) such that a
variety of coarticulation effects were captured.

Each subject was also asked to perform a set of 21 facial expressions
with their mouth based on the Facial Action Coding System [Ekman
and Friesen 1978]. As it is difficult for many subjects to perform



these actions in complete isolation from the others, the subjects were
given the flexibility to perform actions only roughly corresponding
to each of these expressions. They were recorded as they performed
2 iterations of each expression, going from a roughly neutral
expression to the given expression, holding it for roughly 1 second,
and then returning to the neutral expression. To make our training
data more robust to variance in local illumination, we allowed
subjects to move their heads arbitrarily while being recorded.

Animation Parameters. As described above, producing high-
quality animation sequences based on captured data is a challenging
task. Even state-of-the-art, computationally expensive offline
processes fail to produce speech animation sequences of sufficient
quality for our needs. Furthermore, we note that even state-of-the-
art multi-view stereo performance capture methods such as [Beeler
et al. 2011] focus on capturing the surface of the face, and thus
fail to capture important details such as tongue motion that are
crucial for speech animation, as the interior of the mouth is either
partially or completely occluded from each viewpoint. As such,
manual assistance from animators familiar with the full dynamics
of facial movement, including tongue motion, is always required
to produce truly high-quality speech animation sequences based on
actual performances.

We employed 3 professional animators to create animation sequences
for a blendshape model of a digital character corresponding to
each subject’s performance of each of these FACS-based eye and
mouth region expressions. As most of these expressions could be
animated using only a few of the blendshape weights available in
the rig we employed, this process required little time and effort
from the animators. The individual video images of the subject
performing these expressions and their corresponding blendshape
weights provided us with a set of training data for the regressors
used in our system (Section 5).

Label Transfer via Audio Alignment. Speech animation is a
particularly challenging and time-consuming task for an artist, given
the subtle details that are required to create a sequence of mouth
movements that plausibly correspond to an audio recording. The
artists we employed reported that the time required to animate
the entire series of 21 FACS-based mouth expressions for a given
subject was comparable to that required to animate a single sentence
lasting roughly 2-3 seconds. As such, creating individual animation
sequences for each of the 300 recordings obtained from the subjects
was intractable. However, given that synchronized video and audio
of each subject was recorded speaking the same set of training
sentences, we were able to exploit the coherence between these
recordings to expand and generalize our training set using audio-
based alignment of these sequences.

The animators produced high-quality animation sequences corre-
sponding precisely to the mouth motion of a single subject (referred
to as the “reference subject”) for each frame of their recitation of
the Harvard sentences. Given that these weights correspond to
utterances of the same sentences spoken by other subjects, they
can be used as the animation parameters for the other subjects as
well. However, given that the rate at which the subjects spoke these
sentences varied significantly, directly transferring these weights to
the other subjects’ sequences is not possible.

We thus employed a technique based on dynamic time warping,
an algorithm used to measure the similarity of 2 time series,
a = {ao,a1, - ,am} and b = {bo,b1,--- ,bn}, that contain
similar content but that may vary in speed and duration. It is
commonly employed in the area of speech recognition to account
for the variation in the rate at which utterances are spoken. By
using some measure of distance between the segments of one series

with each segment of the other, a local similarity matrix can be
constructed. Dynamic programming can then be used to find a path
through this matrix (i.e., starting at (ao, bo) and stepping forward
in either or both series at each iteration until (ans, bn) is reached)
which minimizes the cost of this traversal.

For each subject’s utterance of each training sentence, a Short-time
Fourier Transform (STFT) is performed on overlapping regions
of the audio signal. The cosine distance between the STFT
magnitudes of this utterance and those of the audio signal for the
reference subject’s utterance of this sentence are used to construct the
similarity matrix. The minimum-cost path through this matrix then
provides a mapping that can be used to interpolate the blendshape
coefficients of each frame of the reference subject’s recording such
that they are appropriately aligned with the frames of the other
subject’s recording. Examples images from video sequences aligned
using this approach and the corresponding reference animation data
can be seen in Figure 4.

We note that this alignment process does not capture the entire
variation in the appearance of each subject as they recite these
sentences, caused by their unique physiology and the specific
dynamics of their performance, such as how much they open their
jaw when pronouncing a word. However, we observed that this
approach can be used to produce appropriate training data for a
system to produce natural and plausible speech animation for a
digital avatar controlled by an arbitrary user.

reference

reference training training training
animation data data data data

Figure 4: Automatic alignment of training data to a reference
sequence with corresponding animation curves.

Eye Region Dataset. To obtain training data for controlling
the upper face motion of our avatar, we recorded sequences of
the subjects performing a variety of movements with their upper
face, including squints, blinks, and eyebrow movements, using
the IR camera within the HMD. The animators then produced
corresponding animations of the character. These image sequences
and the corresponding blendshape weights were then used in as
training data for the eye expression regressor (Section 5).

Facial Target Rig. The animation rig used to control the avatar
seen in our experiments is controlled by a total of 57 blendshapes
for the upper and lower face. 29 of these correspond to specific
mouth motions commonly made during speech, including 5 shapes
controlling the movement of the tongue. 21 correspond to the FACS-
based mouth expressions the subjects were asked to perform during
data collection, while 7 were used to control the movements of the
eye region. In our results, we demonstrate the use of the blendshape
values produced by our system to control rigs for other characters
with corresponding blendshapes.



5 Deep Learning Model for Facial Expression

Our goal is to recover detailed 3D facial expressions from video
frames. In this paper, we address this problem by representing a face
as a set of facial blendshape meshes. Then, our algorithm determines
the blendshape weights that best correspond to each frame. More
concretely, let us assume we are given a generic blendshape model
as a set of meshes b = {bg, by, -+ ,bx}. Our target expression
of frame I" at time ¢ can be formulated as:

N
ff=bo+ Y wi(b; —bo), )

where by is the neutral face expression, and w' € [0,1]" is a
corresponding blendshape weight vector. Then, our goal is to
determine the value for w that best corresponds to a given image
or video frame of a human face. In this paper, we formulate this as
learning a mapping function ¢, which predicts a blendshape weight
vector of image I*, that minimizes

L(y) =Y (') — w'|l3. @)

For the rest of this section, we omit ¢ wherever clear.

Despite many works [Cao et al. 2013; Li et al. 2015] on mapping
3D blendshapes to facial expression, there are many challenges
that prevent us from obtaining very detailed facial expressions. For
example, we need to find a non-linear mapping between a facial
expression and blendshape weights. Defining and optimizing a
high-dimensional non-linear function is a non-trivial task. It is
especially tricky because the method has to handle large variations
caused by occlusions (e.g. the tongue), user identities, personal
appearance (e.g. growing a beard), jittering due to HMD movement,
and environmental changes (e.g. lighting). Furthermore, we want to
eliminate any type of calibration per user and maintain high fidelity
for speech expressions.

In this work, we capitalize on recent developments in deep
convolutional neural networks (CNN) [Krizhevsky et al. 2012;
Simonyan and Zisserman 2014a; LeCun et al. 1998]. CNNs
have attained impressive results for numerous classification and
regression tasks in computer vision and robotics. They excel at
optimizing high-dimensional non-linear functions and are robust to
large variations including occlusions. Hence, we formulate the facial
motion correspondence problem as a regression task using a CNN
learning framework. In short, the CNN framework will find function
parameters such that it optimizes a loss function (e.g. Equation 2)
for all training images.

Here, we use a multi-frame CNN model. This is a common choice
compared to other approaches, such as recurrent neural networks, for
action recognition and video processing [Simonyan and Zisserman
2014b; Wang et al. 2015], because it has only a minor impact on
performance while substantially reducing the training complexity.

In order to enable high fidelity facial speech animation, our CNN-
based method builds upon two main ideas: (1) exploiting a sequence
of frames to capture temporal signals, and (2) explicitly dampening
an estimation toward the neutral face when necessary because
humans are sensitive to neutral expressions. Our model thus contains
two sub-networks. The expression network is a regression function
that estimates facial expression weights from a sequence of frames.
On the other hand, the neutral network is a classification function that
determines whether the expression in the frame is neutral or not. The
output of this network is used for dampening the estimation toward
the neutral expression. The final output of our model, ¢ (-) combines
two network outputs to predict the final blendshape weights. As
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Figure 5: The model trained to regress blendshape weights for
the lower face. Our model has two sub-CNNs so it can incorporate
temporal signals and control the sensitivity to important expressions.

addressed in [Shalev-Shwartz and Shashua 2016; Lake et al. 2016],
the two main advantages of compositing semantically abstracted
subnetworks (i.e. expression and neutral) are the ability to train the
model with an exponentially smaller amount of training data and
explicit interpretability. Our full model is illustrated in Figure 5.

Expression Network. The goal of the expression network is to
regress the blendshape weights that correspond to the target input
frame. More concretely, our goal is to learn a function, ¥ g (I t9 E)s
with the network parameters (or filter values), 0, that maps an
image to its best corresponding blendshape weight vector w'*. We
use the L2 loss function for obtaining optimal network parameters:

argm&“; VeI 0) — w3 ©)

In fact, one advantage of using a frame sequence is that we can
exploit temporal information. To achieve this, we follow a common
practice in action recognition and further modify the model so that it
takes more than one frame as an input. Hence, our CNN architecture
will be trained to find € such that it optimizes:

argmeinZHd)E(It,It_k;G)—thg. @)

In our experiment, we use two frames with £ = 3, which showed
significantly superior results compared to single-frame input.

Each stream of our network takes two multi-scaled frames as an
input. Each input frame is scaled to 65 x 58 and 33 x 29. Using
multiple image resolutions allows our network to learn parameters
that correspond to features at different scales in the input images.
Then, each stream applies a chain of layer operations to scaled
images, which can be described as: 6 x 6 convolutional, ReLU,
2 % 2 max pooling, 6 X 6 convolutional, and ReLU layers. Then,
the outputs from the two images are concatenated and again are
applied to two 1000-dimensional fully-connected layers. We use this
architecture for both the expression networks used to animate the
mouth and eye regions (though the mouth expression network takes
3-channel RGB images as input, while single-channel grayscale
images from the internal IR camera are used for the eye expression
network).



Neutral Face Network. We found that humans are sensitive to
neutral expressions on faces. Hence, we designed our model to pay
extra attention to neutral expressions in the mouth region. As our
dataset primarily contains images of the subjects’ faces while in
motion or making various facial expressions, neutral faces form a
very small portion of the training set used for the mouth expression
network. While we experimented with the inclusion of additional
samples of neutral faces in the training set, we found that the best
results (accurate depictions of emotional and speech expressions
as well as neutral faces) were attained using the combination of
two networks. We train a separate CNN-based function, ¢ (+) that
detects whether a facial expression in the target frame is neutral or
not. The architecture of the neutral network is similar to that of the
expression network above. One key difference is that the neutral
network finds the network parameters 6 by optimizing the softmax
loss function (i.e. classification):

=27 [ log(n (150) + (1 = ) log(1 — v (150))], 5)

where y; indicates whether I° is neutral or not.
The final output of our full model, 1 (-), is:

1
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where « and [ are free logistic function parameters that control the
weight between neutral and expression networks. In our experiments
we fix these parameters to the default values (i.e. « = 1 and 5 = 0).

Training. We use the data generated in Section 4 to train our
networks. A standard stochastic gradient descent algorithm can learn
the function ¢ and all parameters 0, O, o, and 8 by optimizing
Equations 2 and 6. However, we leave « and 3 as control parameters,
in order to provide users the freedom to control the dampening factor
based on each individual’s sensitivity.

Our model parameters are then optimized by back-propagation in
a distributed online implementation. For each mini-batch of size
64, adaptive gradient updates are computed. The learning rate starts
from 0.01 and it gradually decreases to 0.0001.

Data Augmentation. When training CNNs, data augmentation
is necessary to train with a relatively small dataset. We augment
the data using a large number of random translations, rotations,
and rescalings. Note that we do not apply left-right flips because
blendshape weights are not symmetric.

6 Results

Our networks were implemented using the Caffe framework [Jia
et al. 2014], which provides tools facilitating the design, training,
and use of CNNs, as well as the use of GPUs to accelerate the
training process. The system was tested with a variety of subjects
under different circumstances, including some used in the training
set and others who were not. For some tests, the user was asked to
recite sentences from sets of the Harvard sentences that were not
used in the original training set. For others, users were asked to
improvise a variety of facial expressions or statements, or to have
a dialogue with another person. The system was tested in a typical
office environment with standard ambient illumination as well as in
a dark room in which the HMD LED lights were the only source of
illumination. Subjects were able to use the system one after another
with no user-specific calibration in between sessions.

Some sample images demonstrating the variety of mouth and eye
expressions our system is able to animate can be seen in Figure

6. The first and second rows portray users who were included in
the training set, while the users in the third and fourth rows were
not. The results demonstrate that our system is able to animate a
wide variety of facial expressions related to speech and emotional
expressions, including important expressive details such as a user
smiling while talking. Other subtle details that are not attainable
with existing real-time facial tracking techniques, such as motion of
the tongue, are also seen in these images.

We also note that our system is robust to some variation in the
positioning of the HMD and the user’s appearance. In some cases,
the user removed and replaced the HMD with slightly different
positioning, or was asked to manually perturb the orientation of the
HMD (Figure 6, first row), only to have the operation continue as
before. Though no images of users with facial hair were included in
the original training set, our system produced high-quality results on
a user with a significant amount of facial hair, as seen in the first row
of Figure 6. In another session, comparable results were achieved
when the same subject used the system with no facial hair.

The last row of Figure 6 shows sample images of the results achieved
with our eye tracker. We note that it is able to animate salient
movements such as squinting, lowering and raising of the brow, and
blinks with high fidelity. Thus, our system allows for animating the
full face of an HMD user, despite the occlusion introduced by the
display, which would make such animation infeasible for systems
relying on a single camera to track the full face.

While these images provide examples of specific expressions
produced by our system, as our primary goal is expressive speech
animation, the results are best demonstrated on continuous facial
motion. Figure 7 shows the results of our system on a sequence of
images. Though no temporal smoothing was applied to the blend-
shape weights obtained from our regressors, the system smoothly
animates the avatar’s face an expressive manner corresponding to
the user’s expressions. This figure also demonstrates the results
obtained with our system on the challenging sticky lip, an effect
which is difficult to attain with existing real-time facial animation
techniques.

For examples on longer sequences including speech with the
corresponding audio, as well as live demonstrations of the use of
our system with rigid head tracking, we ask the reader to refer to the
supplementary video.

Comparisons. We evaluate our system by comparing it to several
state-of-the-art methods for real-time facial tracking and animation.
Figure 10 shows a sample of how our results compare to those
obtained using an implementation of [Li et al. 2015], a system
designed for tracking the face of an HMD user. A user wore
each system while reciting the same set of sentences. We applied
the blendshape weights obtained from each system to the avatar
and compared the resulting expressions for similar expressions
corresponding to the same points in the test sentences. Since both
animations are produced using two different capture settings, we
synchronize the input using dynamic time warping [Sakoe and Chiba
1978]. Our method does not use depth data, yet it produces results
that are much closer to the user’s expressions than those obtained
when using a method requiring RGB-D data from a mounted depth
camera.

We also compare our method to the original implementation of [Cao
et al. 2014]. As this method is designed to work with unoccluded
views of the user’s full face, we asked the subjects used for data
collection to recite the same training and testing sentences without
wearing the HMD while their full face is recorded with an external
camera at a resolution of 1280 x 720 at 30 fps. The subject’s head
remains fixed relative to the camera with negligible rigid motion.
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Figure 7: Here we show performance capture results for the sticky lip, a deformation that challenges most performance capture techniques.

We use the audio signal to align this data with the training animation
sequences. Using a cropped region (856 x 642, resized to our
network’s input dimensions) of the video around the user’s mouth,
we trained our mouth expression and neutral face networks on this
input data.

Figure 11 shows several example images of the results obtained using
both methods on several test sequences. As the blendshape model
used by [Cao et al. 2014] differs from that used in our system, we
display their results using a personalized model of the user generated
from FaceWarehouse, while ours are displayed using a model
generated using the method of [Hsieh et al. 2015], with blendshapes
corresponding to our original model generated using example-based
facial rigging [Li et al. 2010]. For fairness, we display the results

both with and without the mouth interior, to demonstrate the results
both with and without the partially occluded tongue motion that we
are able to animate using our system. These results demonstrate that
our system produces expressions that more closely match the user’s
facial expressions on these speech sequences.

We note, however, that [Cao et al. 2014] has several advantages
compared to our system. For example, it can track the rigid pose
of the user’s head as its position changes drastically relative to an
external camera using only the video sequence, while our method
requires that the user’s head position varies little relative to the
camera position and requires the IMU on the HMD for rigid pose
tracking. Though the use of sparse facial landmarks for tracking
limits the overall fidelity of the expressions that their method can
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Figure 8: We show that the use of FACS and viseme dataset achieves
the best performance.
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Figure 9: We evaluate the robustness of our system. Extreme
occlusions and illumination can cause the system to fail to produce

appropriate animations.
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Figure 10: Comparison with [Li et al. 2015]. The user wore
each system and recited a set of sentenced that were aligned using
Dynamic Time Warping. We show the resulting expressions for
frames corresponding to the same utterance.

track, it is more computationally efficient, allowing for real-time
implementations on modern mobile devices. Our approach, however,
uses a GPU to perform convolutions on the input images at runtime,
making it more computationally intensive. Furthermore, while our
use of multiple partial views of the user’s face allows for animating
the upper and lower facial expressions of HMD wearers whose
faces are partially occluded from either internal or external cameras,
their method can track the user’s upper and lower facial expressions
using a single video sequence of a face, provided that it is mostly
unoccluded from the camera.

As the blendshape models and training data used in our experiments
differ from those used in the aforementioned works, we performed
further evaluations in which this data was used to train alternate
regressors that were then tested on the same input. The results

=
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Figure 11: Comparison with the original implementation of [Cao
et al. 2014]. For fairness, we show examples both with and without
the mouth interior to compare our results to theirs, which can
animate the face surface but not tongue motion.
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Figure 12: Comparison with a modified implementation of [Cao
et al. 2014], adapted to only track the mouth expressions given a
fixed head pose and user identity.

demonstrate that our approach is able to attain superior results
compared to state-of-the-art real-time facial animation techniques.

Figure 12 demonstrates how our method compares with the DDE
regressor [Cao et al. 2014] modified to track only the lower face for
a specific person. A customized model corresponding to the user’s
identity was obtained in a preprocessing step. Then a person specific
regressor was trained with 45 images containing the same FACS and
viseme expressions as ours and 18 manually annotated landmark
points on the mouth, following the original implementation of [Cao
et al. 2014] for the training parameters. We found adding more
images for training results in no improvement in terms of tracking
accuracy. The user identity parameters, camera focal length and
rigid head pose were fixed, while the expression blendshape weights
were regressed for each frame. These weights were then applied to
our model, and the resulting expressions were compared to those
obtained using our system. The former are comparable with those
obtained using [Li et al. 2015], while ours more closely match the
subject’s expression.

To provide a more direct comparison between these approaches to
regressing blendshape parameters, we performed further evaluations
in which both our system and the modified implementation of
[Cao et al. 2014] were trained using the same training images and



reference animation data for the depicted user. For the [Cao et al.
2014] implementation, mouth contour landmarks in each training
image were labeled by Amazon Mechanical Turk users, and the
corresponding artist-generated blendshape values for each image
were used as ground truth values to train the regressor to recover the
expression parameters, with the rigid motion and identity parameters
fixed as described above. Sample images and more details on the
training process can be found in the supplementary document, and
sample video sequences can be seen in the supplementary video.
Our method is able to capture salient details missed by the [Cao
et al. 2014] implementation, as well as the user’s tongue motion.

Furthermore, we note that regressing directly to the animation
parameters as in our approach does not suffer from a significant
drawback of approaches that explicitly track the user’s face based on
depth data, facial landmarks, or a combination thereof, namely that a
well-trained CNN can still produce plausible animation parameters
even in the case of significant occlusion of the regions of interest. For
example, our system can produce plausible animation parameters for
the avatar’s tongue even when the user’s tongue is largely occluded
by the user’s lips and teeth, as seen in Figure 6. These occlusions
present serious problems for approaches that assume that the regions
of interest remain visible during tracking.

For further comparisons with the aforementioned approaches on
video sequences, please consult the supplementary video.

input frame without temporal signal with temporal signal

Figure 13: Effect of incorporating temporal information into our
network structure by using the first and third previous frame as input.
Using only the current frame as input causes transient details such
as tongue motion to be missed or underrepresented.

v

without neutral network
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Figure 14: Effect of the use of the neutral face network along with
our mouth expression network. Using both together causes both
neutral faces and expressions to be accurately animated.

Network Structure Evaluation. We evaluated the efficacy of
our chosen network structure by comparing the results against
several variants. We found that overall these alternative approaches
produced reasonable results for many cases, yet none of them
consistently produced results comparable to those of our chosen
network structure.

We evaluated our expression network against one using only the
current frame as input, rather than using an additional earlier frame

as described above. Figure 13 shows several examples of the effect
this has on the resulting expressions. The structure of the network
used for this single-frame architecture is otherwise identical to the
aforementioned expression network, with the output of the stream
being fed directly into the fully-connected layers without being
concatenated with the output of the stream for the earlier frame. The
results demonstrated that, while it typically produced reasonable
results, the lack of temporal information caused this variant of the
network to produce erroneous results for many frames, missing
important but transient details such as quick tongue motion. It thus
produced less plausible animations than our chosen architecture.

Figure 14 shows the results when we use our mouth expression
network to animate the user’s mouth expressions both with and
without using the neutral face network. They demonstrate that we
are able to capture neutral expressions more accurately using the
combination of the two networks.

2 convolution layers 3 convolution layers

input frame
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|| > ||
Figure 15: Effect of using only different numbers of convolution
layers for each input stream.

We also evaluated our network’s performance compared to variants
using different numbers of convolution layers (Figure 15). Using
only one convolution layer for each stream produced generally
inferior results, capturing the overall expressions reasonably well
but missing subtle details. This indicates that such a simple and
shallow network is insufficient to recognize these small but crucial
details.

Using an additional convolution layer for each stream also produced
results that were worse than those seen when using only two
convolution layers. Given the relatively small amount of data needed
to train our network, using too many convolution layers may result in
overfitting of the network parameters to the training data, leading to
erroneous results on testing data. This may account for the inferior
results produced by this variant of the network.

Comparisons of the results of these evaluations on video sequences
can be found in the supplementary video.
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Figure 16: Example results produced using retargeting to other
characters. The left column contains external views of the user from
a video roughly synced to the output animation.



Retargeting. To demonstrate our approach on additional char-
acters besides the one used to create the original animations, we
used the example-based facial rigging method of [Li et al. 2010],
with 10 training samples, to generate blendshape expressions based
on additional models: an alien character, and one resembling the
user (generated using the depth sensor-based modeling approach
of [Hsieh et al. 2015]). Figure 16 and the supplemental video show
examples from animation sequences using these characters.

CATATATITIRIRIE
Figure 17: All test frames are sorted according to their predicted
blendshape weights, wt. On the left, we show a particular
blendshape we picked. On the right, the images are sorted by
estimated weights of the picked blendshape in ascending order. This

visualization displays a reasonable order, which indicates that our
model can reliably predict the weights.

Parameter Estimation. In addition to directly evaluating the
rendering results, we also analyzed the estimated blendshape
weights. First, we sort frames by their estimated magnitude from our
model along one specific blendshape weight, wy. Figure 17 shows
results when they are sorted by the openness of the jaw according to
our model’s predictions. It clearly shows that our method reasonably
predicts how much the jaw is open (otherwise, the sorted results
would appear in a random order).

Figure 18: We embed the estimated blendshape weight vector w* of
each frame I' in a 2D space using the t-SNE method. We can observe
that images are clustered by their mouth shapes. This shows that
our method estimates stable and appropriate blendshape weights.

Similarly, given estimated weights w' for each frame I, we
apply t-SNE [van der Maaten and Hinton 2008] to embed the

high-dimensional vector in a 2D space. Figure 18 clearly shows
that similar mouth shapes are clustered together. Both results
provide strong evidence that our method learns meaningful network
parameters and thus can predict appropriate blendshape weights.

User Study. Finally, in order to quantify the advantage provided
by our approach in capturing subtle mouth motion, we ran a
user study that compares 3 variants. Users were shown 4 synced
videos: one input video containing facial motions and audio, and
corresponding animation result videos, which were generated using 3
different methods. We compare our approach against 2 other training
methods. One was trained using only the FACS data recorded from
the 10 subjects, while the other was trained using only the data from
their recitations of the Harvard sentences. Some examples of the
differences between these 3 approaches are illustrated in Figure 8.
The positions of the result videos were also swapped to remove any
location bias. We then asked users to pick the result that recovered
the facial motion most accurately. We queried 300 different Amazon
Mechanical Turk users per video. The user study results are shown
in Table 1. Our full model was significantly favored: more than 70%
of users thought our method was the best, and our method had about
3 times as many votes as the second most favored method (FACS).
Hence, we can conclude that combining these different types of data
to train our model leads to superior results.

Sentence  FACS
7.0% 21.8%

Our full model
71.2%

Table 1: We performed a user study in which viewers chose the best
animation results among those generated using 3 different training
methods. Each column shows how often a particular method was
preferred over the others. Our method was substantially favored
over the 2 other methods. More than 70% of users thought our final
model was the best, and our method had about 3 times as many votes
as the second most favored method (FACS).

Limitations. Despite the impressive results demonstrated by our
system, it does have several limitations. To produce high-quality
results requires training the system with animation sequences that
correspond very well with the associated training videos. We note
that, while our system could be trained with animation sequences
captured using more automated methods, such as those using multi-
view stereo, using artist-generated data as we do allows for animating
subtle but crucial expressions, such as tongue motion, that cannot be
reliably captured using such techniques.

We demonstrate the feasibility of our approach using consumer-
grade cameras such as the Playstation Eye. However, very fast
mouth motion can lead to motion blur in the images captured using
this camera, leading to artifacts in the result animations. We note that
this problem could be alleviated using professional-grade high-speed
cameras, although this would increase the system cost.

As we collected data from only a limited number of subjects,
the system may not be robust to users whose appearance varies
significantly from those in the training set. While we demonstrate
that the system works on a user with some facial hair, despite the
absence of such training data, larger variations in the appearance of
a user, such as the growth of a full beard, may impair its accuracy.
However, we expect that collecting more data from a wider variety
of subjects would allow the CNN to adapt to address these issues.

While we demonstrate that minor hand-to-face interaction such as
touching the chin does not interfere with the performance of our
system (see Figure 6), our system was neither trained nor designed
to handle extreme occlusions such as when much of the mouth



is covered by the hand, and thus our system fails to produce the
correct mouth shape in these cases, as seen in Figure 9. While we
demonstrate its ability to perform in standard ambient illumination
and total darkness, extremely bright illumination (e.g., a powerful
flashlight directed at the face) also causes erroneous results.

Performance. Our results were rendered using a framework
running on an Alienware Area-51 equipped with an NVIDIA Titan
X GPU, 16 GB RAM and a 6-core Intel Core i175930K Processor,
running Windows 8.1. As Caffe does not officially support Windows,
training and running each network was performed an identical
system with 3 Titan X GPUs running Ubuntu 14.04. The blendshape
coefficients were streamed to the rendering system using UDP.

Training each CNN takes approximately 24 hours using a single
GPU. Each of our trained CNNs can process an image during online
operation in no more than 1.6 ms. Our system’s online performance
is limited by our rendering framework, which is capable of achieving
framerates up to 38 fps, although we used a video capture and
rendering framerate of 30 fps for the results seen in our video.

7 Conclusion

We have presented a method for animating a digital avatar in
real-time based on the facial expressions of an HMD user. Our
system is more ergonomic than existing methods such as [Li et al.
2015], makes use of more accessible components, and is more
straightforward to implement. Furthermore, it achieves higher
fidelity animations than can be achieved using existing methods,
and requires no user-specific calibration. As such, it makes a
significant step towards enabling compelling verbal and emotional
communication in VR, an important step for fully immersive social
interaction through digital avatars.

Our approach regresses images of the user directly to the animation
controls for a digital avatar, and thus avoids the need to perform
explicit 3D tracking of the subject’s face, as is done in many
existing methods for realistic facial performance capture. Our
system demonstrates that plausible real-time speech animation is
possible through the use of a deep neural net regressor, trained with
animation parameters that not only capture the appropriate emotional
expressions of the training subjects, but that also make use of an
appropriate psychoacoustic data set.

Future work. We hope to apply our techniques for speech
animation to more general face tracking and animation scenarios.
However, this introduces new challenges that must be addressed,
such as changes in the head pose relative to the camera, wider
variation in the lighting of the environment, and the occlusions
introduced in less constrained settings.

Though we have achieved a significant degree of fidelity and
expressiveness using only video as input, making this a very cost-
effective solution, it is possible that superior results could be attained
using a combination of input from various sources, such as depth
and audio data captured in real-time. Techniques relying on sensor
fusion, such as those explored in [Liu et al. 2015] may allow for
achieving superior results when video data alone is insufficient to
animate a speaking character, such as when occlusions or extreme
lighting conditions make image-based tracking less reliable.

An open question to be addressed is how viable this system is as a
tool for automatically capturing the emotional state of the user. It is
possible that a system such as this could be used as an interface for
communicating in a virtual environment with an Al agent which may
react to the user’s emotional expressions. It could thus be a powerful
tool for many applications ranging from gaming to psychology.
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